
Automated Localization for Unreproducible Builds

Zhilei Ren
Key Laboratory for Ubiquitous Network and Service
Software of Liaoning Province, School of Software,
Dalian University of Technology, Dalian, China

zren@dlut.edu.cn

He Jiang
Key Laboratory for Ubiquitous Network and Service
Software of Liaoning Province, School of Software,
Dalian University of Technology, Dalian, China

jianghe@dlut.edu.cn

Jifeng Xuan
School of Computer Science,

Wuhan University,
Wuhan, China

jxuan@whu.edu.cn

Zijiang Yang
Department of Computer Science,
Western Michigan University,

Kalamazoo, MI, USA
zijiang.yang@wmich.edu

ABSTRACT

Reproducibility is the ability of recreating identical binaries un-

der pre-defined build environments. Due to the need of quality

assurance and the benefit of better detecting attacks against build

environments, the practice of reproducible builds has gained popu-

larity in many open-source software repositories such as Debian

and Bitcoin. However, identifying the unreproducible issues re-

mains a labour intensive and time consuming challenge, because

of the lacking of information to guide the search and the diversity

of the causes that may lead to the unreproducible binaries.

In this paper we propose an automated framework called RepLoc

to localize the problematic files for unreproducible builds. RepLoc

features a query augmentation component that utilizes the infor-

mation extracted from the build logs, and a heuristic rule-based

filtering component that narrows the search scope. By integrating

the two components with a weighted file ranking module, RepLoc

is able to automatically produce a ranked list of files that are help-

ful in locating the problematic files for the unreproducible builds.

We have implemented a prototype and conducted extensive ex-

periments over 671 real-world unreproducible Debian packages in

four different categories. By considering the topmost ranked file

only, RepLoc achieves an accuracy rate of 47.09%. If we expand

our examination to the top ten ranked files in the list produced by

RepLoc, the accuracy rate becomes 79.28%. Considering that there

are hundreds of source code, scripts, Makefiles, etc., in a package,

RepLoc significantly reduces the scope of localizing problematic

files. Moreover, with the help of RepLoc, we successfully identified

and fixed six new unreproducible packages from Debian and Guix.

CCS CONCEPTS

• Software and its engineering→Maintaining software; Soft-

ware evolution;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180224

KEYWORDS

Unreproducible Build; Localization; Software Maintenance

ACM Reference Format:

Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. 2018. Automated Local-

ization for Unreproducible Builds. In ICSE ’18: ICSE ’18: 40th International

Conference on Software Engineering , May 27-June 3, 2018, Gothenburg, Swe-

den. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3180155.

3180224

1 INTRODUCTION

As an indicator of the ability that the binaries could be recreated

consistently from source, recent years have witnessed the emerging

idea of reproducible builds. Given the source files, the reproducibil-

ity is described as the ability of building identical binary under

pre-defined build environments [15]. In this study, source files in-

clude source code, scripts, Makefiles, build configurations, etc [6].

Checking the reproducibility of software creates a verifiable link-

age that bridges the gap between the readable source files and the

binary packages, which is important from various perspectives.

Firstly, reproducibility is very important for the safety of build

environments. For software ecosystems, attacks against the build

environment may lead to serious consequences. By compromising

the system to produce packages with backdoors [26, 45], malicious

behaviors such as trusting trust attack [41] may be introduced

during the build time. For example, in 2015, over 4,000 iOS appli-

cations were infected by a counterfeit version of Apple’s Xcode

development environment (known as XcodeGhost) [1]. XcodeGhost

injected malicious code during compiling time so that developers

unknowingly distributed malware embedded in their applications

[21]. Obviously, a solution is to ensure that the same source files

always lead to the same binary packages so that an infected dif-

ferent binary immediately raises alarms. Unfortunately, a major

obstacle of detecting such attacks lies in the transparency gap be-

tween the source files and their compiled binary packages. Due to

non-deterministic issues such as timestamps and locales, it is not

uncommon that rebuilding an application yields different binaries

even within secure build environments. Therefore, these kinds of

attacks often elude detection because different binaries of the same

application is normal.

Besides detecting attacks against build environments, validating

the reproducibility is also helpful in debugging and finding certain

71

2018 ACM/IEEE 40th International Conference on Software Engineering

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang

release-critical bugs (e.g., libical-dev 1.0-1.1) [2]. Furthermore,

in the context of and continuous integration and software upgrade

[37], reproducible packages could be helpful in caching, and re-

ducing redundant operations, e.g., by eliminating the necessity of

delivering the different binaries compiled from the same source

files. Due to the significant benefits, many open-source software

repositories have initiated their validation processes. These reposi-

tories include GNU/Linux distributions such as Debian and Guix, as

well as software systems like Bitcoin [19]. For instance, since 2014,

the number of Debian’s reproducible packages has been steadily

increasing. Figure 1 presents the trend of the reproducible builds

in Debian [14]. As of August 2017, over 85% of Debian’s packages

could be reproducibly built.

Despite the effort towards reproducibility, many packages remain

unreproducible. For example, according to Debian’s Bug Track-

ing System (BTS), as of August 23, 2017, there are 2,342 packages

that are not reproducible [14] for the unstable branch targeting

the AMD64 architecture. Such large number of unreproducible

packages implies the challenges in detecting and then fixing the

unreproducible issues. In particular, the localization task for the

problematic files is the activity of identifying the source files that

cause unreproducibility, which ranks source files based on their

likelihood of containing unreproducible issues. Currently, the lo-

calization task is mostly manually conducted by developers. Since

there may be hundreds to thousands of source files for a package,

the localization tends to be labor intensive and time consuming.

To address this problem, we consider the source files as text

corpus, and leverages the diff log1 generated by comparing the

different binaries to guide the search. As such, the localization of the

problematic files can be modeled as a classic Information Retrieval

(IR) problem: given the source files and the diff log, determine

those problematic files from the source files that are relevant to the

unreproducible issues. The IR model has the potential to automate

the localization task. However, the localization task is challenging,

due to its unique characteristics.

First, the information for locating the problematic files within

the source files is very limited. The diff log generated by comparing

the different binaries, which is considered as the input of the IR

process, may not be sufficiently informative. We call this challenge

an information barrier. In addition, there are many causes that

may lead to unreproducible builds, such as embedding timestamps

in files and recording file lists in non-deterministic order. The de-

tailed issues are manually listed in Debian’s documentation [12].

Moreover, the diverse types of files in a package also add to the

complexity of localizing the problematic files, which may reside

in not only the source code, but also other types of files such as

scripts, Makefiles and build configurations. We call this challenge a

diverse-cause barrier.

To break through the barriers, we propose a localization frame-

work called RepLoc that targets the localization task in search

of problematic files for unreproducible builds. Given an unrepro-

ducible package with two different built binaries as the input, Re-

pLoc produces a list of ranked source files. RepLoc features two

components that address the two aforementioned challenges. For

the information barrier, we develop a Query Augmentation (QA)

1Generated by diffoscope, https://diffoscope.org

Figure 1: Reproducibility status of Debian unstable for

AMD64

component that utilizes the information extracted from the build

logs to enhance the quality of the queries (represented by the file

names extracted from the diff logs, see Section 2). For the diverse-

cause barrier, we develop a Heuristic rule-based Filtering (HF) com-

ponent. More specifically, we propose 14 heuristic rules that are

obtained by summarizing the information presented in Debian’s

documents. Furthermore, we employ a weighted File Ranking (FR)

component to combine the QA and HF components, and build an in-

tegrated framework to automate the localization of the problematic

files for unreproducible builds.

To evaluate RepLoc, we have collected a real-world dataset that

consists of 671 unreproducible packages. Since these packages were

later fixed with patches from Debian’s BTS, we know exactly which

files caused the unreproducibility and thus can use the facts to

evaluate the accuracy of RepLoc. If we consider the topmost ranked

file only, RepLoc achieves an accuracy rate of 47.09%. If we expand

the range to include top ten ranked files, the accuracy rate becomes

79.28%. For other metrics such as precision and recall, RepLoc also

outperforms the comparative approaches significantly. To further

evaluate the effectiveness of our approach, we use RepLoc on unre-

producible packages that have never been fixed before. With the

help of RepLoc, we successfully identified the problematic files,

then manually fixed the unreproducible issues over three Debian

packages. Moreover, the usefulness of RepLoc is examined over

a different software repository (Guix [11] in this study). Under

the guidance of RepLoc, problematic files for three unreproducible

packages from Guix are detected and fixed.

This paper makes the following main contributions.

• To the best of our knowledge, this is the first work to address the

localization task for unreproducible builds.

• We propose an effective framework RepLoc that integrates heuris-

tic filtering and query augmentation. A prototype has been im-

plemented based on the approach.

• We have evaluated RepLoc on 671 unproducibile packages that

were later fixed in the Debian repository. The experimental re-

sults show that RepLoc is effective. We have made the bench-

marks publicly available at https://reploc.bitbucket.io.

• Under the guidance of RepLoc, we fixed six unreproducible pack-

ages from Debian and Guix, and submitted the patches to the

BTSs of the two repositories. Among the submitted patches, four

have been accepted.

72

Automated Localization for Unreproducible Builds ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 2: Reproducibility validation work flow

Table 1: Snippet of altered environment variations

Configuration First build Second build

env TZ “/usr/share/zoneinfo/Etc/GMT+12” “/usr/share/zoneinfo/Etc/GMT-14”
env LANG “C” “fr_CH.UTF-8”
env LANGUAGE “en_US:en” “fr_CH:fr”
env BUILDDIR “/build/1st” “/build/2nd”
.

The rest of this paper is organized as follows. In Section 2, we

give the background of this work. Our approach is presented in

Section 3, followed by experimental study in Section 4. The threats

to validity and related work are described in Sections 5–6. Finally,

Section 7 concludes the paper.

2 BACKGROUND

Taking Debian as a typical example, Figure 2 illustrates the com-

mon work flow of validating the reproducibility of packages [17].

First, the source files are compiled under two pre-defined build en-

vironments (steps 1–2). More specifically, the build environments

are constructed by setting up altered environment variables or

software configurations. For instance, within Debian’s continuous

integration system,2 altered environment variables include locales,

timezones, user privileges, etc. Table 1 presents a snippet of the

altered environment (see [22] for more detailed information). Two

versions of binaries can be generated with respect to each environ-

ment. The two versions are then compared against each other (step

3). If they are not bit-to-bit identical, the localization of problematic

files that lead to unreproducible builds is required, based on the diff

log and the source files (step 4).

The build and the comparison procedures (steps 1–3) can easily

be automated, but the localization (step 4) mainly relies on the

developers. Unfortunately, manual effort to identify the files that

lead to unreproducible builds is nontrivial. As shown in Figure 2,

the diff logs are the major source of the information to guide the

localization of the problematic files, which, unfortunately, are not

always sufficiently informative.

Figure 3 gives a snippet of the diff log for dietlibc, a libc

implementation optimized for small size. In the original version

(0.33~cvs20120325-6), a static library file differs between the two ver-

sions during the build time (/usr/lib/diet/lib/libcompat.a).
As shown in the diff log, diffoscope indicates the difference via
the output of the GNU binary utility readelf. However, since the

2https://jenkins.debian.net

Figure 3: Diff log snippet for dietlibc

(a) Makefile snippet

(b) Patch snippet

Figure 4: Makefile and patch snippet for dietlibc

diff content may not be well comprehensible (e.g., lines 7–8 in

Figure 3), we do not leverage such information in this study. Mean-

while, Figure 4 presents a snippet of a problematic file (/Makefile)
and the patch that fixes the issue. In Figure 4(b), line 8 indicates

that the root cause of the unreproducibility lies in the non-stable

order of the object files, which are fed to the ar utility to generate

libcompat.a (lines 6–7 of Figure 4(a)). The difficulty in this exam-

ple is that, the diff log may fail to provide sufficient information.

Though it is possible to match the correct file with only the file

name, i.e., line 6 of Figure 4(a), chances are that other irrelevant

files containing the same file name might be matched as well.

The aforementioned example illustrates how problematic files

can be detected and fixed. In reality there are multiple altered

build configurations and can be many corresponding causes that

lead to unreproducible builds. For example, changing the timezone

environment variable (env TZ) may cause the C/C++ packages

that embed __DATE__ macro to be unreproducible, and the locale

environment variable (env LC_*) may trigger unreproducible issues

of packages that capture the text generated by programs. These

diverse unreproducible causes make the localization task difficult.

3 OUR APPROACH

In this section, we discuss the details of RepLoc. Figure 5 depicts

the work flow of RepLoc that consists of three components QA,

HF, and FR. For each component, we shall explain its design and

implementation, companioned with the intermediate results over

the running example dietlibc.

3.1 Query Augmentation Component

The upper part of Figure 5 depicts the QA component, which en-

riches the queried information by matching the files in the diff log

and the build logs, to tackle the information barrier.

73

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang

Figure 5: The RepLoc Framework

Figure 6: Build log snippet for dietlibc

First, the diff log is generated using diffoscope. Then, the query
extraction module takes the diff log as the input, and generates

the basic query. In this study, the basic query consists of the file

names in the diff log. As mentioned, due to the information barrier,

the information that can be utilized to localize the problematic

files is limited other than a list of files that are different within the

two build processes. Thus, we enhance the quality of the queries

with the build command retrieval module. The motivation for this

module is that, during the build process, the build information such

as the executed commands can be obtained. Moreover, based on

the co-occurrence relationship between the file names in the diff

log and the build commands, we can identify the build commands

with which the files mentioned in the diff log are built. Hence,

it is rational to augment the query by supplementing the build

commands from the build log.

Figure 6 illustrates a snippet of the build log of the exemplifying

package dietlibc. It can be observed that the build log is more

informative and provides supplementary information with respect

to the diff log. More specifically, we first split the build log into

build command segments, with respect to the “Entering/Leaving
directory” tags generated by make (e.g., lines 1 and 10 of Figure 6).
With this operation, the commands invoked under the same direc-

tory can be grouped together, as a file of the augmentation corpus

(denoted as a command file). Note that though there are two ver-

sions of build logs with respect to the two build environments, since

we are interested in the build command, the choice of either ver-

sion of build log does not have an impact on the results. Then, the

relevant files in the corpus are obtained by utilizing an IR model. In

essence, any IR model can be adopted. In this study, we employ the

Vector Space Model (VSM), due to its simplicity and effectiveness.

Table 2: Heuristic rule set

ID Rule PCRE statement
1 TIME_MACRO __TIME__
2 DATE_MACRO __DATE__
3 GZIP_ARG \bgzip\s(?!.*-[a-z9]*n)
4 DATE_CMD (\$\(date) |(\$\(shell\s*date) |(\`date)
5 PY_DATE datetime\.datetime\.today
6 PL_LOCALTIME \$\.*localtime
7 SYSTEM_DATE system.*date
8 DATE_IN_TEX \\date.*\\today
9 SORT_IN_PIPE ˆ.*\ |‘(?!.*LC_ALL=).*\s*sort\b
10 GMTIME gmtime\(
11 TAR_GZIP_PIPE \btar\b.*\ |\s*\bgzip\b
12 PL_UNSORTED_KEY (ˆ(?!.*sort).*\s*keys\s*%)
13 LS_WITHOUT_LOCALE ˆ.*\$\(.*(?!.*LC_ALL=).*\s*\bls\b
14 UNSORTED_WILDCARD (ˆ(?!.*sort).*\s*\bwildcard\b)

To realize the VSM based augmentation, we calculate the cosine

similarity between basic query and the command files. Thereafter,

the matched commands from the most relevant command files are

obtained. In particular, for the VSM model, we assign weight value

for each file with the TF-IDF (Term Frequency-Inverse Document

Frequency) measurement, which is widely used in IR [32]. In this

paper, for a term t in a document d , its TF-IDFt,d value is calculated

based on ft,d × N
nt
, where ft,d indicates the number of t ’s occur-

rences in d , nt denotes the number of files in which t appears, and
N means the number of source files. With TF-IDF defined, each file

is represented as a vector, and the cosine similarity with the basic

query is used to rank the command files.

Sim(�l , �s) =
�l · �s

|�l | |�s |
, (1)

where �l · �s represents the inner product of the basic query and

the command file, and |�l | |�s | denotes the product of 2-norm of the

vectors. After that, the basic query and the retrieved contents, which

are commands executed during the build process, are concatenated

together as the enhanced query.

Running example: For dietlibc, all the file names in the diff

log, e.g., ./usr/lib/diet/lib/libcompat.a, are extracted as the

basic query. Then, within the augmentation, ar cru bin-x86_-
64/libcompat.a [. . .] (line 3 of Figure 6) and the build com-

mands in the same command file are retrieved. Finally, the contents

of the retrieved command files are appended after the basic query,

as the final query.

3.2 Heuristic Filtering Component

The HF component is designed to capture the problematic files

by incorporating the domain knowledge, which is represented as

frequently observed patterns. In HF, the heuristic rules are con-

structed based on the following criteria: (1) The rules are manually

constructed based on Debian’s documentation [13]. (2) The rules

are summarized for the four major categories of unreproducible

issues (see Setcion 4.2). We traverse the notes in the documentation,

and capture those issues that are described as Perl Compatible Reg-

ular Expression (PCRE). For example, invoking gzip without “-n”
argument could be expressed using the negative assertions feature

of PCRE (rule 3 in Table 2). Meanwhile, as a counterexample, the

timestamps embedded in Portable Executable (PE) binaries are hard

74

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Automated Localization for Unreproducible Builds ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

to be identified by heuristic rules or even by developers [20]. After

manual inspection based on the criteria, we obtain 14 heuristic

rules, which are presented in Table 2, and described as follows:

(1) TIME_MACRO: using C time preprocessing macro in source

files will embed different timestamps when compiled at different

times. (2) DATE_MACRO: embedding C date preprocessing macro in

source files is similar as the previous case. (3) GZIP_ARG: if applying
gzip without -n argument, timestamps will be embedded in the

header of the final compressed file. (4) DATE_CMD: capturing the

current date with the date shell command. (5) PY_DATE: obtain-
ing date time in Python scripts. (6) PL_LOCALTIME: obtaining date
time in Perl scripts. (7) SYSTEM_DATE: recording system time in the

compiled binary. (8) DATE_IN_TEX: embedding date in TeX files,

which influences the built pdf files. (9) SORT_IN_PIPE: execute sort
in pipeline without locale setting. (10) GMTIME: obtaining current
date time. (11) TAR_GZIP_PIPE: execute tar and gzip in pipeline.

(12) PL_UNSORTED_KEY: traversing unsorted hash keys in Perl script

does not guarantee identical order. (13) LS_WITHOUT_LOCALE : cap-

turing ls without locale setting is similar with SORT_IN_PIPE. (14)
UNSORTED_WILDCARD: usingwildcard in Makefiles without sorting,

similar with PL_UNSORTED_KEY.
By applying the rules over the source files (e.g., with GNU grep

-r -P), we obtain a subset of files that may lead to unreproducible

builds. Note that these rules equally treat the source files as plain

text, rather than consider the file types (e.g., based on file extension).

The reason is that the unreproducible issues may reside in snippets

or templates that do not follow file extension conventions, which

are eventually embedded into unreproducible binaries. Based on

such consideration, we do not sort the matched files in HF.

Running example: For dietlibc, there are in total five prob-

lematic files, namely, /libpthread/Makefile, /libdl/Makefile,
/debian/{rules, implicit}, and /Makefile. Among these files,

/Makefile (see Figure 4(b)) can be captured by the UNSORTED_-
WILDCARD rule, in which sort does not appear before wildcard.
However, we should note that there may be false alarms, e.g., for

unexecuted commands or text in the comments. Consequently, HF

may fail to place the matched problematic files at the top of the list.

3.3 File Ranking Component

The motivations behind the combination of HF and QA are twofold:

(1) The heuristic rules in HF focus on the static aspect of the source

files, i.e., treat all the source files in a unified way, and capture the

suspicious files that match the defined patterns. Such mechanism

can handle various file types. Unfortunately, there may be false

alarms, especially for those files unused during the build process. (2)

The build log based augmentation takes the dynamic aspect of the

build process into consideration. With QA, we concentrate on the

commands invoked during the build process. Hence, by combining

the mechanisms, we can strengthen the visibility of the problematic

files that lead to unreproducible builds.

In the FR component, these goals are realized as follows. First,

with the augmented query, the relevant files are obtained with the

source file retrieval module. Similar as in Section 3.1, the VSMmodel

is adopted to calculate the similarity values between the augmented

query and each source file. Second, since we have acquired both the

files retrieved by HF and the similarity values between source files

Algorithm 1: RepLoc

Input: binary package first, binary package second, weight α
Output: candidate file list result

1 begin
// Query Augmentation

2 log ← diffoscope(first, second)

3 query ← parse_log(log)

4 command_files ← parse_build_log(build_log)

5 relevant_command ← retrieve_relevant(query, command_files)

6 augmented ← concatenate(query, relevant_commant)

// Heuristic Filtering

7 l ist ← ∅

8 for each source file s do
9 if s is matched by any rule in Table 2 then list ← list ∪ {s }

10 end

// File Ranking

11 for each source file s do
12 if s ∈ list then ws ← 1

13 else ws ← 0

14 scores ← Calculate Sim′ with respect to Equation 2

15 end

16 return sort(source_files, score)

17 end

Table 3: Files retrieved by RepLoc and its components over

dietlibc, with successful hits in bold

Rank FR (without QA) Rank FR (with QA)
1 /CHANGES 1 /debian/rules
2 /debian/rules 2 /Makefile
3 /Makefile 3 /CHANGES
4 /debian/control 4 /debian/patches/0005-[. . .].diff
5 /FAQ 5 /diet.c

Rank HF Rank RepLoc
1 /t.c 1 /debian/rules
2 /debian/implicit 2 /Makefile
3 /debian/dietlibc-dev.postinst.in 3 /CHANGES
4 /debian/rules 4 /libpthread/Makefile
5 /libugly/gmtime.c 5 /libdl/Makefile

and the augmented query, in the file ranking module, it is natural

to combine these two types of information, to better capture the

problematic files. For example, we can modify Equation 1 and apply

Sim′ to rank the source files:

Sim′(�l , �s) = (1 − α) × Sim(�l , �s) + α ×ws , (2)

where ws = 1 for those source files matched by the HF compo-

nent, and ws = 0 otherwise. α ∈ [0, 1] is a weight parameter to

balance the two terms, e.g., large α values make RepLoc favor the

HF component.

With Equation 2, the source files are ranked according to their

modified similarity to the augmented query, and the top ranked

files are returned as the final results of RepLoc. We should note

that, in this study, we adopt the file-level localization paradigm, in

that the fixing for many unreproducible packages is not unique. For

instance, statements declaring missing environmental variables can

appear anywhere in the file before it is needed. Hence, it is difficult

to establish line-level ground-truth. In Algorithm 1, we present the

pseudo-code of RepLoc, which combines QA (lines 2–6), HF (lines

7–10), and FR (lines 11-16) sequentially.

Running example: In Table 3, we present the top five files

retrieved by RepLoc and its individual components. From the table,

75

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang

we can observe that without augmenting the query, FR is able to

retrieve two problematic files. However, the topmost ranked file

is a changelog (/CHANGES), in that the file names in the diff log

appear in this file. In contrast, with the query augmented, FR (with

QA) is able to rank the two problematic files at the top of the list.

Meanwhile, althoughHF is able to capture /libpthread/Makefile,
the file is not assigned top rank due to other false alarms, e.g., /t.c.
Finally, by combining FR, QA, and HF, RepLoc is able to locate four

problematic files.

4 EXPERIMENTAL RESULTS

4.1 Research Questions

In this study, we intend to systematically analyze RepLoc, by inves-

tigating the following Research Questions (RQs):

• RQ1: Is RepLoc sensitive to the weighting parameter α?
• RQ2: How effective is RepLoc?

• RQ3: How efficient is RepLoc?

• RQ4: Is RepLoc helpful in localizing unfixed packages?

Among these RQs, RQ1 concentrates on the impact of the weight-

ing scheme between the components in RepLoc. RQ2 focuses on

howwell RepLoc performs in terms of different quality metrics. RQ3

examines whether RepLoc is time consuming, and RQ4 investigates

the RepLoc’s generalization.

4.2 Data Preparation

In this study, the dataset is constructed by mining Debian’s BTS. To

the best of our knowledge, Debian is the only repository providing

both past-version packages and reproducibility-related patches,

which are crucial for generating the corpus and the ground truth.

Consequently, all the packages within the dataset are extracted from

Debian’ BTS, which are tagged as unreproducible by bug reporter

via debtags, i.e., the command line interface for accessing the

BTS. According to Debian’s documentation, there are 14 categories

of reproducible issues [16]. There are also two special categories

indicating the packages that fail to build from source, and the tool-

chain issues (non-deterministic issues introduced by other packages,

see Section 5), which are not considered in this study.

We download all the 14 categories of 1716 bug reports, and

download the packages, with their corresponding patches. Then,

we apply the validation tool kit,3 to obtain the corresponding diff

logs and build logs. In this study, we consider those categories with

more than 30 packages. With such criterion, we obtain 671 packages

in the dataset, which fall into the four largest categories. Figure 7(a)

illustrates the statistics of the dataset. In the figure, we present the

numbers of the open and closed bugs in Debian’s BTS, as well as

the number of packages in the dataset. Among the four categories

of packages, the Timestamps category contains the most packages

(462), followed by File-ordering (118), Randomness (50), and Locale

(41). For all the four categories of 1491 packages that are labeled as

“done”, the packages in the dataset take a portion of 45.34%. Note

that there are less packages in the dataset than closed bug reports,

since packages may not be compilable due to the upgrade of their

dependencies.

3The tool kit realizes steps 1–3 of Figure 2, available at https://anonscm.debian.org/
cgit/reproducible/misc.git

(a) Number of packages (b) Problematic file types

Figure 7: File statistics of the dataset

In Figure 7(b), we illustrate the statistics of the patches in the

dataset. From the figure, we could observe that there are many

types of files that might be involved in the unreproducible builds.

For these files, the Debian rules files, which are the main build

scripts, take the largest portion of the fixed files (29.82%). Auxiliary

files, such as the configure scripts and input files (*.in), takes the
second largest portion (17.21%). After that, there are the Makefiles

(11.68%), scripts such as Python/Perl/PHP files (14.60%), C/C++

files (5.94%), XML files (4.80%), implicit build files (2.71%). Since

we classify the files based on their file extensions heuristically,

there are also 13.24% of the files that are not easy to classify, e.g,

those without file extensions. This phenomenon conforms with

the second barrier mentioned in Section 1, i.e., the causes to the

unreproducible builds are diverse, which makes the localization

task very challenging.

4.3 Implementation and Metrics

RepLoc is implemented in Perl 5.24 and Java 1.8. All the experiments

are conducted on an Intel Core i7 4.20 GHz CPU server with 16 GB

memory, running GNU/Linux with kernel 4.9.0. For the compara-

tive algorithms, we consider four variants of RepLoc, since there is

no prior approach addressing this problem. The first two variants

implement two baseline algorithms, which only consider either

the HF or the FR model (denoted as RepLoc(HF) and RepLoc(FR)).

These two variants are incorporated to examine the performance

of its building-block components. Moreover, RepLoc(FR) could be

considered the simulation of the manual localization, since in FR,

the retrieval is realized by matching source files with diff log con-

tents. Then, RepLoc(FR+QA) considers utilizing the QA component

to enhance the basic queries extracted from the diff logs. Finally,

RepLoc indicates the version discussed in Section 3.

To evaluate the effectiveness of RepLoc, metrics commonly used

in the IR literatures are employed to evaluate the performance of

RepLoc, including the accuracy rate, the precision, the recall, and

the Mean Average Precision (MAP). The metrics are computed by

examining the ranked list of source files returned by the framework

in response to a query. The Top-N source files in the ranked list

is called the retrieved set and is compared with the relevance list

to compute the Precision and Recall metrics (denoted by P@N and

R@N respectively). Given an unreproducible package with problem-

atic files, a Top-N accuracy rate score, e.g. A@1, A@5, and A@10,

of a localization tool is the portion of Top-N lists a tool provides

that at least one problematic file contains in it [30, 48]. In this study,

76

Automated Localization for Unreproducible Builds ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 8: Impact of varying α

we also report P@1, P@5, P@10 and R@1, R@5, R@10 [28, 48]. P@N

means the portion of problematic files successfully retrieved in a

Top-N list, while R@N measures how many problematic files are

retrieved in a Top-N list among all the problematic files:

P@N =
of files that cause unreproducible builds

N
, (3)

R@N =
retrieved problematic files in the Top-N list

of problematic files
. (4)

Precision and Recall usually share an inverse relationship, in

that, the Precision is higher than Recall for lower values of N and

vice versa for higher values of N . An overall metric of retrieval

accuracy is known as Mean Average Precision (MAP), which is

the average of the Average Precision (AP) values over all the prob-

lematic files in unreproducible packages. For an unreproducible

package with several problematic files, the AP is computed as
∑M
k=1

P@k×pos(k)
of files related in the patch , where M is the size of a ranking

list, pos(k) indicates whether the kth file in a ranking list is related

to the unreproducible build, and P@k is the precision described in

Equation 3. With AP defined, MAP can be calculated by averaging

all the AP scores across all the unreproducible packages.

4.4 Investigation of RQ1

In this RQ, we intend to investigate whether RepLoc is sensitive to

the weighting parameter α . As described in Section 3, in Equation 2,

we propose the weighted similarity between queries and source

files. Hence, in this RQ, we are interested in investigating RepLoc’s

behavior as we alter the weight of the two components. More

specifically, for each category of dataset, we randomly select half

of the packages, and a grid search from 0.1 to 0.9 with a step of 0.1

is employed to analyze the impact of varying α .
Considering the Timestamps and the Locale datasets, we visually

present the trend of the A@10, P@10, R@10 and the MAP values

against the α value in Figure 8. From the figure, the following ob-

servations can be drawn. First, for the randomly selected packages,

the performance of RepLoc exhibits similar trend, i.e., when α is set

within the range [0.2, 0.4], RepLoc obtains the best results. Second,

we observe that RepLoc is not very sensitive to α , unless α is too

large, which will make RepLoc prefer the HF component. Hence,

for the subsequent experiments, α is set with 0.3.

Answer to RQ1: Experimental results show that, RepLoc is not

very sensitive to the parameter, which to some extent demonstrates

the robustness of RepLoc.

4.5 Investigation of RQ2

In this RQ, we examine whether RepLoc locates the problematic

files accurately. We present the experimental results, and discuss

the phenomena observed. In Table 4, we first give the results over

the datasets. The table is organized as follows. The first column

indicates the four categories of datasets we built in this study (see

Section 4.2). The second column represents the four variants of

RepLoc. Then, the rest of the table presents the metrics that evaluate

the performance of each variant. Note that for the accuracy rate,

the precision, and the recall, the metric values are averaged over all

the packages. Besides, we also present the aggregate performance

at the bottom of the table.

Taking the Timestamps dataset as an example, several interesting

phenomena can be observed. First, the performance of RepLoc(HF)

is not satisfying. Even considering the Top-10 results, the corre-

sponding accuracy rate is around 70%. To examine the represen-

tativeness of the heuristic rules, in Table 5 we present the results

of RepLoc(HF) with single rule. We report the A@10, P@10, R@10,

and MAP of the five rules that perform the best. Among the rules,

the GZIP_ARG rule achieves the highest accuracy rate. However, the
A@10 value is below 30%, which is significantly outperformed by

RepLoc(HF) that considers all the rules. Similar observations could

be drawn for other performance metrics, which to some extent

confirms the diverse-cause barrier.

Second, by comparing the results of RepLoc(FR+QA) against

RepLoc(FR) in Table 4, we can confirm the usefulness of QA. As

mentioned, RepLoc(FR) could be loosely considered the simulation

of manual localization, which tries to match the problematic files

with the diff log contents. Over the Timestamps dataset, A@10 of

RepLoc(FR) is 71.21%. With the augmentation of the query, A@10

improves to 76.41%. Moreover, when we combine RepLoc(FR+QA)

with HF, the performance is further improved, i.e., A@10 of RepLoc

achieves 82.90%, which implies that for over 80% of the unrepro-

ducible packages in the Timestamps dataset, at least one problem-

atic file is located in the Top-10 list. Besides, similar results are

obtained over the other datasets, i.e., RepLoc(HF) and RepLoc(FR)

perform the worst, RepLoc(FR+QA) outperforms RepLoc(FR) con-

sidering the A@10 value, and RepLoc performs the best.

Associated with Table 4, we also conduct statistical tests, to

draw confident conclusions whether one algorithm outperforms

the other. For the statistical test, we employ the Wilcoxon’s signed

rank test, with a null hypothesis stating that there exists no dif-

ference between the results of the algorithms in comparison. We

consider the 95% confidence level (i.e., p-values below 0.05 are con-

sidered statistically significant), and adopt the P@10 and R@10 as

the performance metrics. We do not consider the accuracy rate and

the MAP metrics, in that these are aggregate metrics. Over all the

instances, when comparing RepLoc with any of the other three

baseline variants, the null hypothesis is rejected (p-value < 0.05

for both P@10 and R@10), which implies that RepLoc outperforms

their baseline variants in a statistically significant way.

To gain more insights into the behavior of RepLoc, we present

the performance of the four variants against the number of retrieved

results in Figure 9, over typical datasets. In the figure, the x-axis

and the y-axis indicate the number of retrieved files, and the per-

formance metrics. From the sub-figures, we confirm that over both

77

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang

Table 4: Comparison results between RepLoc and its variants

Dataset Model A@1 A@5 A@10 P@1 P@5 P@10 R@1 R@5 R@10 MAP

Timestamps

RepLoc(HF) 0.4048 0.6775 0.7229 0.4048 0.1511 0.0835 0.3587 0.6222 0.6682 0.3522
RepLoc(FR) 0.3160 0.5736 0.7121 0.3160 0.1268 0.0807 0.2821 0.5253 0.6553 0.2777
RepLoc(FR+QA) 0.4762 0.6753 0.7641 0.4762 0.1511 0.0883 0.4155 0.6177 0.7102 0.4009
RepLoc 0.5238 0.7792 0.8290 0.5238 0.1792 0.0991 0.4538 0.7295 0.7839 0.4400

File-ordering

RepLoc(HF) 0.3136 0.4407 0.4576 0.3136 0.0983 0.0534 0.2653 0.3968 0.4197 0.2528
RepLoc(FR) 0.1525 0.5169 0.6949 0.1525 0.1085 0.0729 0.1215 0.4427 0.6150 0.1136
RepLoc(FR+QA) 0.3814 0.6780 0.7627 0.3814 0.1492 0.0864 0.3040 0.5978 0.6856 0.2804
RepLoc 0.4492 0.7288 0.7966 0.4492 0.1661 0.0966 0.3774 0.6506 0.7331 0.3572

Randomness

RepLoc(HF) 0.1000 0.2200 0.2600 0.1000 0.0480 0.0280 0.0850 0.2100 0.2500 0.0813
RepLoc(FR) 0.1000 0.3000 0.4800 0.1000 0.0640 0.0500 0.1000 0.3000 0.4650 0.1000
RepLoc(FR+QA) 0.2200 0.3200 0.4200 0.2200 0.0680 0.0460 0.2100 0.3050 0.4100 0.2050
RepLoc 0.2000 0.4200 0.5000 0.2000 0.0880 0.0540 0.1900 0.4050 0.4900 0.1854

Locale

RepLoc(HF) 0.0976 0.3171 0.3659 0.0976 0.0634 0.0366 0.0976 0.3049 0.3415 0.0976
RepLoc(FR) 0.1463 0.2439 0.4634 0.1463 0.0488 0.0463 0.1463 0.2317 0.4512 0.1494
RepLoc(FR+QA) 0.2439 0.4146 0.5610 0.2439 0.0829 0.0561 0.2317 0.4024 0.5488 0.2256
RepLoc 0.2683 0.5122 0.7317 0.2683 0.1024 0.0732 0.2561 0.5000 0.7195 0.2500

Overall

RepLoc(HF) 0.3472 0.5797 0.6200 0.3472 0.1288 0.0712 0.3059 0.5324 0.5734 0.2990
RepLoc(FR) 0.2608 0.5231 0.6766 0.2608 0.1142 0.0750 0.2320 0.4760 0.6216 0.2278
RepLoc(FR+QA) 0.4262 0.6334 0.7258 0.4262 0.1404 0.0829 0.3694 0.5777 0.6736 0.3544
RepLoc 0.4709 0.7273 0.7928 0.4709 0.1654 0.0937 0.4087 0.6774 0.7491 0.3949

Table 5: Result of RepLoc(HF), with single heuristic rule

ID Rule A@10 P@10 R@10 MAP

3 GZIP_ARG 0.2981 0.0341 0.2823 0.1864
4 DATE_CMD 0.2191 0.0253 0.1878 0.1250
14 UNSORTED_WILDCARD 0.1058 0.0112 0.0968 0.0578
13 LS_WITHOUT_LOCALE 0.0671 0.0072 0.0428 0.0247
9 SORT_IN_PIPE 0.0387 0.0039 0.0351 0.0261

Figure 9: Trends of precision and recall of RepLoc

the datasets, RepLoc outperforms the other variants significantly,

i.e., the performance curves for RepLoc lie above those for other

variants, which implies that for all the cases of the retrieved results,

combining the two components is able to obtain better results. This

phenomenon conforms with our observations in Table 4.

Answer to RQ2: By comparing the variants of RepLoc over 671

real world packages, we confirm that by combining the heuristic

rule-based filter and the query augmentation, RepLoc is able to

outperform its variants.

Figure 10: Histogram for scale statistics

Figure 11: Histogram for efficiency evaluation

4.6 Investigation of RQ3

In this RQ, we evaluate RepLoc from the efficiency perspectives.

Since manually localizing the unreproducible issues is a time con-

suming task, automating such process is profitable only if the pro-

posed approach is time efficient. Hence, we present the time statis-

tics of the experiments. Figure 10 depicts the statistics of the source

files as histograms, in which the x-axis indicates the number of

source files (fileNum) and the words (wordNum), and the y-axis

represents the associated frequency. In this study, the number of

files ranges within [6, 19890], and the number of words for the

majority of the packages ranges around 1 × 104, which implies that

manually inspecting the files would be difficult.

Since the scale of the packages in this study varies greatly, it is

intuitive that the localization process over different packages will

78

Automated Localization for Unreproducible Builds ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 6: Results of RepLoc, over manpages-tr

Rank RepLoc(FR) Rank RepLoc(FR+QA)
1 /debian/rules 1 /debian/patches/bashisms.patch
2 /source/man8/mount.8.xml 2 /debian/rules
3 /source/tr/linkata.sh 3 /source/manderle.sh
4 /source/man1/rsync.1.xml 4 /Makefile
5 /source/manderle.sh 5 /debian/manpages-tr.prune

Rank RepLoc(HF) Rank RepLoc
1 /source/man1/gzip.1.xml 1 /source/manderle.sh
2 /source/manderle.sh 2 /debian/patches/bashisms.patch
3 3 /debian/rules
4 4 /source/man1/gzip.1.xml
5 5 /source/man1/patch.1.xml

vary accordingly. To investigate this issue, we present the results

related to time efficiency considering the three variants of RepLoc.

In Figure 11, we illustrate the distributions of the dataset scalability

and the execution time. In the sub-figures, the x-axis indicates the

time in seconds, and the y-axis represents the frequency. From the

results, we observe that, the indexing of the documents consumes

the largest portion of time, compared with other components. In

particular, the median of the execution time for RepLoc is 5.14

seconds.

Answer to RQ3: In this RQ, we investigate the efficiency per-

spectives of RepLoc. In this study, the indexing of the document

consume the majority of the time.

4.7 Investigation of RQ4

For RQ1–RQ3, to evaluate the performance of RepLoc properly, we

employ the packages that have been fixed, and adopt the patches

from the BTS as the ground truth. However, in the real-world re-

producible validation scenario, the patches are not available in

advance. Hence, in this RQ, we intend to investigate RepLoc under

such condition. More specifically, we consider two scenarios, i.e.,

we apply RepLoc to the packages over (1) Debian packages that are

previously unfixed, and (2) the unreproducible packages from Guix.

First, we are interested in whether RepLoc could be generalized

to unfixed packages, which are obtained from the continuous inte-

gration system of Debian. We also check the BTS, to ensure that the

packages have not been fixed. We apply RepLoc to localize the prob-

lematic files, and then manually check and fix the unreproducible

issues. Through localization and fixing, 3 unreproducible packages

belonging to the Timestamps category are fixed, i.e., regina-rexx
(3.6-2), fonts-uralic (0.0.20040829-5), and manpages-tr (1.0.5.1-
2). We submit the corresponding patches to the BTS [3–5], and the

one for fonts-uralic has been accepted.

For these packages, the problematic files are ranked among the

top of the retrieved list by RepLoc. For example, in Table 6, we

present the results over the package manpages-tr. The table is or-
ganized similarly as Table. 3. From the table, we observe that RepLoc

is able to localize problematic files effectively, i.e., the problematic

files are ranked the first in the result. The package is unreproducible

due to the invocation of gzipwithout “-n”, and the issue can be cap-
tured by the GZIP_ARG rule in “/source/manderle.sh”. However,
since the heuristic rules fail to capture the dynamic aspect of the

build process, a file (“/source/man1/gzip.1.xml”) unused during

compilation is also retrieved. In contrast, with FR and QA, we con-

centrate on the files involved by the build process. By combining

Table 7: Results of RepLoc, over skalibs

Rank RepLoc(FR) Rank RepLoc(FR+QA)
1 /package/info 1 /configure
2 /doc/[. . .]/kolbak.html 2 /src/[. . .]/uint32_reverse.c
3 /doc/[. . .]/unixmessage.html 3 /src/[. . .]/badrandom_here.c
4 /doc/[. . .]/unix-transactional.html 4 /src/[. . .]/goodrandom_here.c
5 /doc/[. . .]/unix-timed.html 5 /src/[. . .]/md5_transform.c
.
24 /Makefile 10 /Makefile

Rank RepLoc(HF) Rank RepLoc
1 /tools/gen-deps.sh 1 /Makefile
2 /Makefile 2 /configure
3 /src/[. . .]/localtm_from_ltm64.c 3 /src/[. . .]/uint32_reverse.c
4 4 /src/[. . .]/badrandom_here.c
5 5 /src/[. . .]/goodrandom_here.c

both the static (HF) and the dynamic (HF and QA) perspectives, the

problematic file is ranked the first of the list with higher probability.

Second, we consider the packages from the Guix repository, to

investigate whether the knowledge obtained from Debian could

be generalized to other repositories. The reasons we choose Guix

are that, (1) the repository is interested in the reproducible builds

practice [23], and (2) its package manager provides the functionality

of validating package reproducibility locally, which facilitates the

experimental design. As a demonstration, we localize and manually

fix the problematic files of 3 packages, namely libjpeg-turbo
(1.5.2), djvulibre (3.5.27), and skalibs (2.3.10.0). Similar with the

previous case, the patches were submitted to Guix’s BTS [8–10].

Taking skalibs as an example, we present the results of the variants

of RepLoc in Table 7. From the table, we could observe that the

problematic file “/Makefile” is assigned the top rank. Contrarily,

without RepLoc, over 900 source files have to be manually traversed.

Such observation to some extent demonstrates the usefulness of

RepLoc in leveraging the knowledge from Debian to a different

repository such as Guix. After localizing the problematic file and

manually fixing, the submitted patch has been accepted and pushed

into the code base of Guix [10]. Similarly, the patches for djvulibre
[8] and libjpeg-turbo [9] have also been accepted.

Answer to RQ4:We demonstrate that RepLoc is helpful in lo-

calizing unfixed unreproducible packages from both Debian and

Guix. In particular, unreproducible issues of 6 packages from both

repositories are fixed under the guidance of RepLoc, which have

not been fixed before this study.

5 THREATS TO VALIDITY

There are several objections a critical reader might raise to the

evaluation presented in this study, among which the following two

threats deserve special attention.

First, in this study, the heuristic rules in HF are summarized from

Debian’s documentation. Also, we leverage the build log gathered

from the build process. Hence, some may argue that the approach

cannot be generalized to other software repositories because it relies

too much on Debian’s infrastructure. To mitigate this threat, in

RepLoc, attention is paid so that the components are not specialized

for Debian. For example, despite knowing that the Debian rules
files take the largest portion of the problematic files (see Figure 7(b)),

no extra priority is given to these files during ranking. Also, in HF,

we avoid using heuristic rules specific to Debian, and intend tomake

79

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang

the rules as general as possible. For instance, UNSORTED_WILDCARD
is applicable for Makefile based build systems, and GZIP_ARG is

helpful if gzip-based compression is involved. As a result, the

results of this study can be generalized to other repositories. As

demonstrated in RQ4, we have successfully applied RepLoc to Guix.

For other repositories, applying RepLoc should only require minor

adaptation. For example, for the Fedora project, the build log can

be gathered by parsing the verbose output of the mock build tool,

and the diff log could be generated by diffoscope as well.

Second, when constructing the datasets, the unreproducible pack-

ages caused by the tool-chain issues are not considered. For these

packages, the unreproducible issues are introduced by the depended

packages rather than the current package. Hence, identification of

the tool-chain issues is another challenging task that requires fur-

ther manual investigation [7]. Besides, we should note that fixing

the tool-chain issues may help make more packages reproducible.

For example, when reproducible-related patches were accepted by

gcc from upstream, around 200 unreproducible packages that de-

pended on gcc became reproducible automatically [18]. We plan to

explore the tool-chain issues in the future.

6 RELATEDWORK

6.1 Bug Localization Related Work

First, this study is closely related to the fault localization studies,

especially the IR-based approaches.

For example, Zhou et al. [49] proposed a specialized VSM based

approach, and consider the similarities between bug reports to local-

ize buggy files. Wang et al. [44] propose a compositional model that

integrates multiple variants of VSM. In particular, they model the

composition of different VSM variants as a optimization problem,

and apply a genetic algorithm to search for the suitable composi-

tion pattern between VSM variants. Wang et al. [42] investigate the

usefulness of IR-based fault localization techniques, and discover

that the quality of the bug reports are crucial to the performance

of localization tasks.

Meanwhile, domain knowledge is utilized to improve the perfor-

mance of IR-based bug localization techniques. Ye et al. [48] find

bug-fixing frequency and bug-fixing recency of source code files are

helpful for bug localization. Saha et al. [38] find the structure of bug

reports and source code files are also good knowledge for bug local-

ization. They consider bug reports or source code files as documents

with structured fields, e.g., summary and description, or file name,

class name, and method name, respectively. Stack-trace information

in bug report is also analyzed [33, 46] to improve the performance

of bug localization. Besides, version histories [39, 40, 43] and similar

bug reports [24] are proved to be useful.

Besides, with the development of IR techniques, other text min-

ing methodologies are also incorporated to support locating buggy

files. For example, due to its effectiveness, Latent Dirichlet Allo-

cation (LDA) has gained its popularity in the field of bug localiza-

tion. Lukins et al. [31] propose a static LDA-based technique for

automatic bug localization. Lam et al. [29] propose a localization

framework HyLoc that combines deep learning and IR-based model.

They integrate deep neural network and a VSM variant, to comple-

ment the two standalone components. Experimental results over

real world projects demonstrate that their proposed model outper-

forms the individual models. Rao et al. [35] propose an incremental

framework to update the model parameters of the Latent Semantic

Analysis, which is then applied to localize buggy files. Experiments

over software libraries with ten years of version history validate

their framework.

However, despite the closeness to these studies, we should note

that the problem in this study has its unique features. For example,

the counterpart of the bug reports in IR-based fault localization, i.e.,

the diff logs, are not sufficiently informative to guide the retrieval.

6.2 Reproducible Build Related Work

To the best of our knowledge, there have not been studies on local-

izing files that cause unreproducible builds. However, there have

been studies that address the importance of reproducible builds.

For example, Wheeler [45] describes a practical technique named

diverse double compiling. By compiling the source files twice with

different compilers, and verifying the compiled binaries, certain

types of malicious attacks can be detected and prevented. According

to Debian’s documentation, this work partially motivates the repro-

ducible builds practice [15]. Holler et al. [26] investigate the diverse

compilation under embedded system, and experimentally quantify

the efficiency of diverse compiling for software fault tolerance. Car-

navalet and Mannan [25] conduct an empirical study, focusing on

the reproducible builds in the context of security-critical software.

Based on the experiments on the encryption tool TrueCrypt, they

summarize the challenges of reproducibility in practice. Ruiz et al.

[36] address the reproducibility in cloud computing. They adopt the

term reconstructable software, and propose a prototype to simplify

the creation of reliable distributed software.

In this study, we focus on the localization task for unreproducible

builds, which has not been addressed in the existing studies.

7 CONCLUSIONS

In this study, we investigate the localization task for unreproducible

builds. We present components that consider heuristic knowledge,

similarity based information, as well as their integration as Re-

pLoc. For empirical validation, we create four categories of publicly

available datasets with 671 unreproducible packages from Debian.

Extensive experiments reveal that RepLoc is able to effectively lo-

calize the files that lead to unreproducible builds. Furthermore,

with the help of RepLoc, we successfully identified and fixed 6 new

unreproducible packages from Debian and Guix.

For the future work, we are interested in the localization of prob-

lematic files for the tool-chain related issues. Also, inspired by the

record-and-play techniques [34] from the crash reproduction based

debugging research [27, 47], it would be interesting to leverage

these techniques to detect more accurate correspondence between

the build commands executed and the built binaries.

ACKNOWLEDGEMENTS

This work is supported in part by the National Natural Science

Foundation of China under Grants 61772107, 61722202, 61502345,

and 61403057, and in part by the Fundamental Research Funds for

the Central Universities under Grant DUT16RC(4)62.

80

Automated Localization for Unreproducible Builds ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] 2015. Protecting our customers from XcodeGhost. https://www.fireeye.com/blog/

executive-perspective/2015/09/protecting_our_custo.html. (September 2015).
[2] 2017. Debian bug report logs – #773916: libical. https://bugs.debian.org/cgi-bin/

bugreport.cgi?bug=773916. (August 2017).
[3] 2017. Debian bug report logs – #854293: manpages-tr. https://bugs.debian.org/

cgi-bin/bugreport.cgi?bug=854293. (August 2017).
[4] 2017. Debian bug report logs – #854294: regina-rexx. https://bugs.debian.org/

cgi-bin/bugreport.cgi?bug=854294. (August 2017).
[5] 2017. Debian bug report logs – #854362: fonts-uralic. https://bugs.debian.org/

cgi-bin/bugreport.cgi?bug=854362. (August 2017).
[6] 2017. Debian packaging/source package. https://wiki.debian.org/Packaging/

SourcePackage. (February 2017).
[7] 2017. Fixing a toolchain package. https://reproducible-builds.org/contribute/.

(January 2017).
[8] 2017. GNU bug report logs – #28015: djvulibre. https://debbugs.gnu.org/cgi/

bugreport.cgi?bug=28015. (August 2017).
[9] 2017. GNU bug report logs – #28016: libjpeg-turbo. https://debbugs.gnu.org/cgi/

bugreport.cgi?bug=28016. (August 2017).
[10] 2017. GNU bug report logs – #28017: skalibs. https://debbugs.gnu.org/cgi/

bugreport.cgi?bug=28017. (August 2017).
[11] 2017. The Guix System Distribution. https://www.gnu.org/software/guix/. (Au-

gust 2017).
[12] 2017. Known issues related to reproducible builds. https://tests.

reproducible-builds.org/index_issues.html. (July 2017).
[13] 2017. Notes on build reproducibility of Debian packages. https://anonscm.debian.

org/git/reproducible/notes.git. (August 2017).
[14] 2017. Overview of reproducible builds for packages in unstable for

amd64. https://tests.reproducible-builds.org/debian/unstable/index_suite_
amd64_stats.html. (August 2017).

[15] 2017. Reproducible builds. https://reproducible-builds.org/. (August 2017).
[16] 2017. Reproducible builds bugs filed. https://tests.reproducible-builds.org/debian/

index_bugs.html. (August 2017).
[17] 2017. Reproducible Builds Experimental Toolchain. https://wiki.debian.org/

ReproducibleBuilds/ExperimentalToolchain. (February 2017).
[18] 2017. Reproducible builds: week 54 in Stretch cycle. https://reproducible.alioth.

debian.org/blog/posts/54/. (October 2017).
[19] 2017. Reproducible builds: who’s involved. https://reproducible-builds.org/who/.

(August 2017).
[20] 2017. Timestamps In PE Binaries. https://wiki.debian.org/ReproducibleBuilds/

TimestampsInPEBinaries. (August 2017).
[21] 2017. Validating Your Version of Xcode. https://electricnews.fr/

validating-your-version-of-xcode/. (August 2017).
[22] 2017. Variations introduced when testing Debian packages. https://tests.

reproducible-builds.org/debian/index_variations.html. (August 2017).
[23] Ludovic Courtès. 2015. Reproducible builds: a means to an end. https://www.

gnu.org/software/guix/news/reproducible-builds-a-means-to-an-end.html. (No-
vember 2015).

[24] Steven Davies, Marc Roper, and Murray Wood. 2012. Using bug report similarity
to enhance bug localisation. In Reverse Engineering (WCRE), 2012 19th Working
Conference on. IEEE, 125–134.

[25] Xavier de Carné de Carnavalet and Mohammad Mannan. 2014. Challenges and
Implications of Verifiable Builds for Security-critical Open-source Software. In
Proceedings of the 30th Annual Computer Security Applications Conference (ACSAC
’14). ACM, New York, NY, USA, 16–25. DOI:http://dx.doi.org/10.1145/2664243.
2664288

[26] Andrea Höller, Nermin Kajtazovic, Tobias Rauter, Kay Römer, and Christian
Kreiner. 2015. Evaluation of diverse compiling for software-fault detection.
In Proceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition. EDA Consortium, 531–536.

[27] Nima Honarmand and Josep Torrellas. 2014. Replay Debugging: Leveraging
Record and Replay for Program Debugging. In Proceeding of the 41st Annual Inter-
national Symposium on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway,
NJ, USA, 445–456. http://dl.acm.org/citation.cfm?id=2665671.2665737

[28] Pavneet Singh Kochhar, Yuan Tian, and David Lo. 2014. Potential biases in bug
localization: Do they matter?. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. ACM, 803–814.

[29] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2015.
Combining Deep Learning with Information Retrieval to Localize Buggy Files for
Bug Reports (N). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, 476–481.

[30] Hang Li. 2014. Learning to rank for information retrieval and natural language
processing. Synthesis Lectures on Human Language Technologies 7, 3 (2014), 1–121.

[31] Stacy K Lukins, Nicholas A Kraft, and Letha H Etzkorn. 2010. Bug localization
using latent Dirichlet allocation. Information and Software Technology 52, 9 (2010),
972–990.

[32] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, and others. 2008.
Introduction to information retrieval. Vol. 1. Cambridge university press Cam-
bridge.

[33] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and
Reproducing Android Application Crashes. In 2016 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2016, Chicago, IL, USA, April
11-15, 2016. 33–44.

[34] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and
Nimrod Partush. 2017. Engineering Record and Replay for Deployability. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC ’17). USENIX Association, Berkeley, CA, USA, 377–389. http:
//dl.acm.org/citation.cfm?id=3154690.3154727

[35] Shivani Rao, Henry Medeiros, and Avinash Kak. 2015. Comparing Incremen-
tal Latent Semantic Analysis Algorithms for Efficient Retrieval from Software
Libraries for Bug Localization. ACM SIGSOFT Software Engineering Notes 40, 1
(2015), 1–8.

[36] Cristian Ruiz, Salem Harrache, Michael Mercier, and Olivier Richard. 2015. Re-
constructable Software Appliances with Kameleon. SIGOPS Oper. Syst. Rev. 49, 1
(Jan. 2015), 80–89. DOI:http://dx.doi.org/10.1145/2723872.2723883

[37] Davide Di Ruscio and Patrizio Pelliccione. 2014. Simulating upgrades of complex
systems: The case of Free and Open Source Software. Information and Software
Technology 56, 4 (2014), 438 – 462. DOI:http://dx.doi.org/https://doi.org/10.1016/
j.infsof.2014.01.006

[38] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.
Improving bug localization using structured information retrieval. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. IEEE,
345–355.

[39] Bunyamin Sisman and Avinash C Kak. 2012. Incorporating version histories
in information retrieval based bug localization. In Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories. IEEE Press, 50–59.

[40] Chakkrit Tantithamthavorn, Akinori Ihara, and Ken-ichi Matsumoto. 2013. Us-
ing co-change histories to improve bug localization performance. In Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), 2013 14th ACIS International Conference on. IEEE, 543–548.

[41] Ken Thompson. 1984. Reflections on trusting trust. Commun. ACM 27, 8 (1984),
761–763.

[42] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the Use-
fulness of IR-based Fault Localization Techniques. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA 2015). ACM,
New York, NY, USA, 1–11. DOI:http://dx.doi.org/10.1145/2771783.2771797

[43] Shaowei Wang and David Lo. 2014. Version history, similar report, and structure:
Putting them together for improved bug localization. In Proceedings of the 22nd
International Conference on Program Comprehension. ACM, 53–63.

[44] Shaowei Wang, David Lo, and Julia Lawall. 2014. Compositional vector space
models for improved bug localization. In 2014 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 171–180.

[45] David A Wheeler. 2005. Countering trusting trust through diverse double-
compiling. In Computer Security Applications Conference, 21st Annual. IEEE, 13–
pp.

[46] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong
Mei. 2014. Boosting bug-report-oriented fault localization with segmentation
and stack-trace analysis. In 2014 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 181–190.

[47] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash reproduction via
test case mutation: let existing test cases help. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015. 910–913. DOI:http://dx.doi.org/10.1145/2786805.
2803206

[48] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant files for
bug reports using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 689–699.

[49] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In Software Engineering (ICSE), 2012 34th International Conference on. IEEE, 14–24.

81

